19 research outputs found

    Unifying Sparsest Cut, Cluster Deletion, and Modularity Clustering Objectives with Correlation Clustering

    Get PDF
    Graph clustering, or community detection, is the task of identifying groups of closely related objects in a large network. In this paper we introduce a new community-detection framework called LambdaCC that is based on a specially weighted version of correlation clustering. A key component in our methodology is a clustering resolution parameter, λ\lambda, which implicitly controls the size and structure of clusters formed by our framework. We show that, by increasing this parameter, our objective effectively interpolates between two different strategies in graph clustering: finding a sparse cut and forming dense subgraphs. Our methodology unifies and generalizes a number of other important clustering quality functions including modularity, sparsest cut, and cluster deletion, and places them all within the context of an optimization problem that has been well studied from the perspective of approximation algorithms. Our approach is particularly relevant in the regime of finding dense clusters, as it leads to a 2-approximation for the cluster deletion problem. We use our approach to cluster several graphs, including large collaboration networks and social networks

    On the Optimal Recovery of Graph Signals

    Full text link
    Learning a smooth graph signal from partially observed data is a well-studied task in graph-based machine learning. We consider this task from the perspective of optimal recovery, a mathematical framework for learning a function from observational data that adopts a worst-case perspective tied to model assumptions on the function to be learned. Earlier work in the optimal recovery literature has shown that minimizing a regularized objective produces optimal solutions for a general class of problems, but did not fully identify the regularization parameter. Our main contribution provides a way to compute regularization parameters that are optimal or near-optimal (depending on the setting), specifically for graph signal processing problems. Our results offer a new interpretation for classical optimization techniques in graph-based learning and also come with new insights for hyperparameter selection. We illustrate the potential of our methods in numerical experiments on several semi-synthetic graph signal processing datasets.Comment: This paper has been accepted by 14th International conference on Sampling Theory and Applications (SampTA 2023

    Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods

    Full text link
    Dense subgraph discovery is a fundamental primitive in graph and hypergraph analysis which among other applications has been used for real-time story detection on social media and improving access to data stores of social networking systems. We present several contributions for localized densest subgraph discovery, which seeks dense subgraphs located nearby a given seed sets of nodes. We first introduce a generalization of a recent anchored densest subgraph\textit{anchored densest subgraph} problem, extending this previous objective to hypergraphs and also adding a tunable locality parameter that controls the extent to which the output set overlaps with seed nodes. Our primary technical contribution is to prove when it is possible to obtain a strongly-local algorithm for solving this problem, meaning that the runtime depends only on the size of the input set. We provide a strongly-local algorithm that applies whenever the locality parameter is at least 1, and show why via counterexample that strongly-local algorithms are impossible below this threshold. Along the way to proving our results for localized densest subgraph discovery, we also provide several advances in solving global dense subgraph discovery objectives. This includes the first strongly polynomial time algorithm for the densest supermodular set problem and a flow-based exact algorithm for a densest subgraph discovery problem in graphs with arbitrary node weights. We demonstrate the utility of our algorithms on several web-based data analysis tasks
    corecore